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Abstract— Modern day localization requires multiple satellites 
in orbits, and relies on ranging capabilities which may not be 
available in most proximity flight radios that are used to explore 
other planetary bodies such as Mars or Moon. The key results 
of this paper are:   

1. A novel relative positioning scheme that uses Doppler 
measurements and the principle of the Law of Cosines 
(LOC) to localize a user with as few as one orbiter.   

2. The concept of “pseudo-pseudorange” that embeds the 
satellite’s velocity vector error into the pseudorange 
expressions of the user and the reference station, thereby 
allowing the LOC scheme to cancel out or to greatly 
attenuate the velocity error in the localization calculations.   

In this analysis, the Lunar Relay Satellite (LRS) was used as the 
orbiter, with the reference station and the user located near the 
Lunar South Pole. Multiple Doppler measurements by the 
stationary user and the reference station at different time points 
from one satellite can be made over the satellite’s pass, with the 
measurements in each time point processed and denoted as from 
a separate, faux satellite.   

The use of the surface constraint assumption was implemented 
with this scheme; using the knowledge of the altitude of the user 
as a constraint. Satellite’s ephemeris and velocity, and user’s 
and reference station’s Doppler measurement errors were 
modeled as Gaussian variables, and embedded in Monte Carlo 
simulations of the scheme to investigate its sensitivity with 
respective to different kinds of errors.  

With only two Doppler measurements, LOC exhibited root 
mean square (RMS) 3D positional errors of about 22 meters in 
Monte Carlo simulations. With an optimal measurement 
window size and a larger number of measurements, the RMS 
error improved to under 10 meters. The algorithm was also 
found to be fairly resilient to satellite velocity error due to the 
error mitigating effects in the LOC processing of the pseudo-
pseudorange data type.  

A sensitivity analysis was performed to understand the effects 
of errors in the surface constraint, showing that overall position 
error increased linearly with surface constraint error.  An 
analysis was also performed to reveal the relationship between 
the distance between the user and the reference station; a 
distance of up to 100 km only lead to an increase of 10 meters in 
RMS 3D position error.  

Ultimately, the LOC scheme provides localization with a 
minimal navigation infrastructure that relaxes hardware 
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requirements and uses a small number of navigation nodes (as 
small as one). 
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1. INTRODUCTION 

The majority of localization schemes for Earth’s navigation 
today use range measurements to perform position fixing. 
These pseudorange-based localization schemes can achieve 
down to sub-decimeter accuracy, assuming differential GPS 
(DGPS) [1]. For the Earth based GPS scheme, each satellite 
is required to possess dedicated ranging hardware, and there 
must be a minimum of 24 satellites for 95% coverage [2]. 
Both of these requirements would be extraneous and 
ambitious for missions orbiting other planets such as Mars or 
the Moon.  

Current space proximity link radios do not provide ranging 
functions, but they can measure Doppler. The use of Doppler 
as a means for localization instead of ranging has been 
performed in limited aspects, with positioning of emitters 
with differential Doppler [3] - [5]. However, these methods 
leverage an active emitter as a user and multiple receivers. 
This paper introduces a novel relative positioning scheme 
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that localizes a static, passive user (receiver) with a single 
satellite (emitter). It is based on the principle of the Law of 
Cosines (LOC) and uses Doppler measurements between the 
satellite and the user as well as a reference station to infer the 
user’s position relative to the reference station on the surface 
of a planetary body. The derivation of the LOC scheme is 
described in Appendix A.   

Doppler Measurements 

Due to the reliance of the Doppler measurements on the 
knowledge of the satellite’s velocity magnitude and direction, 
the LOC localization scheme is very sensitive to errors in the 
satellite’s velocity vector.  To mitigate this error, the concept 
and the data type of “pseudo-pseudorange” was introduced 
that embeds the satellite’s velocity error into the pseudorange 
expressions of the user and the reference station, thereby 
allowing the LOC scheme to “cancel out” or to greatly 
attenuate the velocity error in the localization calculations.  
The details are discussed in Appendix A.   

Along with the dependence on satellite velocity, the Doppler 
measurements rely on the accuracy and consistency of the 
onboard clock. Innovations have led to small, stable 
oscillators like the Chip Scale Atomic Clock (CSAC) that 
could fit onto CubeSat class satellites [6].  

Single Satellite Multiple Measurements (SSMM) 

To achieve localization with only a single satellite, a 
technique called Single Satellite Multiple Measurements 
(SSMM) was used. In this technique, a specified number of 
Doppler measurements were taken by the user and the 
reference station over a specified amount of time 
(measurement window). At each measurement, the line of 
sight vector from the reference station to the satellite’s 
current position (at the time of measurement) was also stored. 
The time between each measurement and the final 
measurement was used along with the precise rotation rate of 
the planet to rotate each of the line of sight vectors by the 
amount that the planet had rotated (about the planet’s rotation 
axis). This allows for multiple measurements from one 
satellite to be used at one time, creating multiple faux 
satellites that are all directed towards the same static user. 
The derivation of this technique is described in Appendix C. 

Surface Constraint 

Another assumption to reduce the number of required 
measurements was the use of the surface constraint; using the 
user’s altitude (distance from the center of the planet to the 
user) in the localization algorithm. If a general, regional 
location of the user is known, along with accurate 
topographical data of the planet or region, an approximate 
altitude can be used as a constraint in the solution of the LOC 
algorithm. The algorithm can also be used without the surface 
constraint, but many measurements over a long period of time 
would need to be taken to ensure an accurate initial position 
fix. Once this has been done however, the calculated altitude 
can be used as the surface constraint to greatly reduce the 
number of measurements required (only two for one position 

fix) and can be updated through dead reckoning.  The details 
are shown in Appendix B.   

Applications 

The LOC scheme is particularly useful in providing a 
minimal navigation infrastructure with a small number of 
navigation nodes (as small as one); for example, users on the 
Moon and Mars that use current proximity link radios. 
However, this technique can be used on any planetary body 
with a reference station in the vicinity of the user and at least 
one orbiter.  

Relaxing the assumption of one satellite, multiple orbiters can 
be used to increase data diversity. Due to the inherent 
symmetric ambiguity of Doppler measurements, two (or 
more) orbiters with different orbit planes would help resolve 
the ambiguity and mitigate errors in three-dimensions (3D). 
However, only one satellite was used in this paper’s analysis.  

The computational load of the LOC during a convergence 
calculation is comparable to that which is required of a 
traditional GPS receiver: ultimately the algorithm is a 
converging steepest descent search with matrix calculations 
on each iteration. However, additional resources are required 
for the initialization of some algorithm parameters, such as 
the Doppler measurement. Because the Doppler 
measurement will have to be fairly precise, a long duration 
communication link with the satellite will be required. This 
will also be required is SSMM if utilized. Ultimately, if using 
SSMM, the user would have to be stationary to perform 
Doppler measurements for localization, until the 
measurement window is complete. 

Summary of Results 

For this single-satellite case under reasonable error 
assumptions (discussed in the next section), it is shown that 
at the beginning of the LRS pass and with a wait time of 30 
minutes and two measurements, the 3D positioning error is 
approximately 22 m.  With a wait time of 40 minutes with 
one measurement per minute, the 3D positioning error can be 
reduced to less than 10 m.   

 

2. LOC SIMULATION SETUP AND RESULTS  
Simulation Setup 

In this paper, the LOC scheme and its performance will be 
described in the context of the localization of a user on the 
Lunar South Pole surface with a reference station in its 
vicinity, and a Lunar Relay Satellite (LRS) in an elliptical 
frozen orbit with high visibility over the South Pole.  The 
locations of the surface user and the reference station are 
given in Table 1, and the LRS’s orbital elements are given in 
Table 2 (visualized in Figure 1). The user was 10 km from 
the reference station.  
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Table 1: User Locations 

User Location 
User (Target) 0° E, 89.6702° S 
Reference User (Base) 0° E, 90° S 

 
 
Table 2: Lunar Relay Satellite (LRS) Orbital Elements 

on the Moon  
a (km) e i (deg) 𝛀 (deg) w (deg) 
6142.4 0.6 57.7 90 180 

 
In this single satellite case, Doppler measurements were 
sampled at different time points when the LRS was in view 
with the surface user and the reference station.  The user was 
assumed to be stationary when the samples were taken.   

The LOC scheme was simulated using the error assumptions 
provided in Table 3. The properties of convergence for all 
Monte Carlo simulations are provided in Table 4. 

 

Table 3: Error Standard Deviations 
Error Sigma (σ) 
Satellite Ephemeris (3D) 5 m 
Satellite Velocity Vector (3D) 1 cm/s 
Doppler Measurement 0.005 Hz 

 
Table 4: Convergence and Monte Carlo Properties 

Convergence  0.01 cm 
Convergence Iteration Limit 25 
Monte-Carlo Iterations 10,000 
Randomization Algorithm Gaussian 

 

 

Figure 1: The Lunar Relay Satellite (LRS) Orbit over 
the Lunar South Pole 

 

 
2 Private communications with Jeffery Stuart, JPL Navigation Team, 2018.   

All three components of satellite ephemeris and velocity had 
the respective error standard deviation multiplied by a 
Gaussian random value (ranging from -1 to 1) added to them; 
the simulated received Doppler measurement also was 
summed with the same randomized error. 

The satellite ephemeris error was found from general Deep 
Space Network (DSN) ephemeris error knowledge [7], and 
the satellite velocity vector error was quoted from the 
navigation team at the Jet Propulsion Laboratory (JPL)2. 
Finally, the Doppler measurement error was a conservative 
estimate from Doppler noise values [8]. 

The assumption of a known surface constraint was used and 
ideally set to the precise altitude of the user. Along with this, 
the assumption of Single Satellite Multiple Measeurement 
(SSMM) was used along with precise knowledge of the 
Moon’s rotation rate and rotation axis.  

Results 

A simulation of the LOC algorithm with a moving window 
of 30 minutes with two measurements (once at the beginning 
of the window and once at the end) was executed over the 
entire LRS pass. The converged location was compared to the 
actual location of the user and an error vector was derived. 
The magnitude of this error vector, or the 3D position error, 
and the number of iterations for convergence is shown in 
Figure 2.     
 

 

Figure 2: Two Doppler Measurements in a 30-Minute 
Moving Window over the Entire LRS Pass  

The greatest accuracy occurred at the beginning of the pass 
(Figure 2). This effect aligns with expectations due to the 
beginning of the pass being the point when the satellite has 
the largest range rate and is the farthest from being directly 
overhead the user (the angle between the satellite’s velocity 
vector and the line of sight vector from user to satellite is 
farthest from 90 degrees). The 3D position error increased at 
the center of the LRS pass due to the slowing speed of the 
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satellite at its apoapsis and it being close to directly overhead 
the user, decreasing the noticeable effects of Doppler shifts. 
 
Running a Monte Carlo simulation only at the beginning of 
the pass, using error values from Table 3, results in a root 
mean square (RMS) 3D position error of approximately 22 m 
(Figure 3). This simulation assumed the same characteristics 
as before: a moving window of 30 minutes with two 
measurements (once at the beginning of the window and once 
at the end), the surface constraint, and SSMM. 
 
Due to the dependence of Doppler measurements (and 
therefore the LOC scheme) on the accuracy of the satellite’s 
velocity vector, the relationship between the resulting 3D  
 

 

Figure 3: Monte Carlo Analysis of LOC with  
2 Measurements and a 30 Minute Window 

 

 
Figure 4: 3D Position Error vs. Satellite Velocity Vector 
Error for the LOC scheme using two measurements with 

a 30-minute window at the beginning of the LRS pass  

position error and the satellite velocity vector error was 
evaluated at the beginning of the LRS pass (Figure 4). Each 

data point was the resulting RMS error from a Monte Carl o 
simulation following properties from Table 4, only varying 
the satellite velocity error sigma from 0 to 10 cm/s. The same 
method of data production was used for Figures 5 – 7. 

The LOC scheme was shown to be quite resilient with respect 
to the LRS’s velocity error (Figure 4). Figure 5 displays a 
larger range of velocity vector error.  
 
The resiliency against increases in satellite velocity vector 
error was due to the error mitigating effects of the pseudo-
pseudorange data type. Again, these expressions embed the 
satellite velocity vector error into the pseudo-pseudorange 
equations of both the user and the reference station, and 
essentially “cancel-out” the error when using relative 
navigation.   

 
Figure 5: 3D Position Error vs. Satellite Velocity Vector 
Error for LOC scheme using two measurements with a 

30-minute window at the beginning of the LRS pass. 
With a larger range of satellite velocity error 

 
The overall 3D position error can be further reduced through 
longer measurement windows and more measurements. 
Figure 6 displays the relationship between 3D position error 
and measurement window size with only two measurements 
(still at the beginning and end of the measurement window). 
 
With only two measurements, accuracy improved with a 
longer time between measurements, and flattened when the 
window size reached 120 minutes or more. This was because 
of the increase of data diversity as the satellite moved through 
its pass. If more than two measurements are taken however, 
further improvements can be achieved. Figure 7 demonstrates 
the 3D position error as a function of the window size with 
one measurement per minute.  
 
The optimal configuration of was found to be a measurement 
window of 40 minutes with 1 measurement per minute (40 
measurements; Figure 7), resulting in a 3D position error of 
under 10 meters for the error conditions given in Table 3.  
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Figure 6: 3D Position Error vs. Measurement Window 
Size for LOC using two measurements at the beginning 

of the LRS pass 

 

 
Figure 7: 3D Position Error vs. Measurement Window 

Size and Number of Measurements per Window for 
LOC with at the beginning of the LRS pass. There was 

one measurement per minute in each varying 
measurement window 

 
A similar configuration of 40 minutes and 38 measurements 
was confirmed to be the global minimum for the LRS pass 
with an analysis on variable measurement window size and 
variable number of measurements (Appendix D). 
 
This configuration was optimized specifically for a 
measurement window starting at the beginning of the LRS’s 
pass. Figures 5 – 7 are therefore dependent on the satellite’s 
orbit and position during the satellite’s pass. If another 
satellite or another time during the pass was used, this 
analysis could be performed (even by the user, real time) to 
solve for the configuration resulting in a local minimum for 

3D position error. If passes are predictable, configurations for 
a global minimum can be solved for and scheduled for 
frequent position fixes of the user.  
 
3. SURFACE CONSTRAINT SENSITIVITY ANALYSIS 
The assumption of the surface constraint adds previous 
knowledge of the user’s altitude to localization. This can be 
assumed with an initial knowledge of the user’s regional 
location and with accurate topographical maps of the 
planetary body. However, if topographical variations exist in 
the region near the user, the estimate of the user’s altitude 
may contain error. A sensitivity analysis was performed 
regarding the relationship between the error in known user 
altitude for the surface constraint and the overall 3D position 
error. Figure 8 displays the relationship between the error in 
the surface constraint vs. the overall 3D position error at the 
optimized measurement configuration calculated before (40-
minute window with 38 measurements).  
 

 
Figure 8: 3D Position Error vs. Surface Constraint 

Error 
 
In the range of error described in Figure 8, the 3D position 
error grows linearly with the surface constraint error (Figure 
8). This would mean that if the user’s altitude was estimated 
incorrectly by 1 km in the surface constraint, the resulting 
position fix would also be erroneous by approximately 1.5 
km. One solution to this problem would be to initially localize 
without the surface constraint, then calculate the user’s 
altitude from the position fix. With this newly calculated 
altitude, the user would then be able to quickly re-localize in 
the future. This solution could also be used if the user has no 
previous knowledge of coarse location and therefore cannot 
infer an altitude from topological maps.  
 
However, due to the lack of the surface constraint, the LOC 
algorithm was found to require significantly more 
measurements and a longer measurement window to result in 
a reliable position fix. The relationship between the 
measurement window size and the 3D position error for the 
LOC without the surface constraint is shown in Figure 9.  
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As shown in Figure 9, a much greater number of 
measurements and length of measurement window were 
required to achieve errors similar to those seen with the 
optimal measurement configuration. If the user can be static 
for an extended period of time, 3 hours in this case, a fairly 
accurate position fix can be calculated without the surface 
constraint. The altitude of this position fix can then be used 
as the surface constraint in following solutions, drastically 
reducing the waiting period in between solutions. Figure 10 
demonstrates the LOC without a surface constraint, 180 
measurements, and a measurement window size of 195 
minutes; the RMS 3D position error was approximately 14 
meters. This can be improved further with more 
measurements and a longer measurement window. 
 

 
Figure 9: 3D Position Error vs. Measurement Window 
Size for LOC with 180 measurements per window and 

no surface constraint 
 
 

 
Figure 10: Monte Carlo Simulation of 3D Position Error 

of LOC with 180 measurements per window, a 195-
minute measurement window, and no surface constraint 

 

4. USER TO REFERENCE STATION DISTANCE 
ANALYSIS 

A property that was kept constant throughout this analysis 
was the distance between the user and the reference station. 
Because of the importance of this reference station in the 
implementation of the LOC scheme, the relationship between 
the relative distance between the user and the reference 
station was analyzed. This was performed with the optimal 
configuration that was solved for previously (40 minute 
measurement window with 38 measurements)  and with the 
surface constraint. The RMS 3D position error vs. the relative 
location of the user was displayed in Figure 11.  

With a distance of up to 100 km away from the reference 
station, the largest increase in 3D position error was 
approximately 10 meters (Figure 11). This confirms the 
resiliency of the LOC algorithm with movement of the user 
at large distances away from the reference station.  
 

 
Figure 11: 3D Position Error vs. Relative Location of User 
with the Reference Station at the center of the circle (0,0) 
 
The error shown in Figure 11 increased with a directional bias 
towards the lower left direction. This was due to the location 
of the satellite and the direction of the satellite’s velocity at 
the time of the measurements. The closer the user became to 
the point exactly nadir from the satellite, the lower the 
accuracy of the Doppler measurements became, leading to 
increased 3D position errors. 
 

5. CONCLUSIONS AND FUTURE WORK 
With the use of the LOC scheme and some assumptions, 
precise localization within 25 meters can be accomplished 
with as few as one satellite. With an optimized configuration 
for the LRS – dependent on orbital characteristics of the 
satellite and where it is over its pass – the total 3D position 
error can be reduced to under 10 meters.  

The assumption of the surface constraint added knowledge of 
user altitude to the system, allowing for less required 
measurements and improved satellite geometry in most cases. 
However, if knowledge of planet topography was weak or if 
the initial, regional location of the user was unknown, LOC 
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without the surface constraint could be used over a large 
measurement window to localize, using the newly calculated 
altitude as a surface constraint to lower required 
measurement window time in future position fixes. 

Finally, using the optimal measurement configuration and the 
surface constraint, the LOC was shown to be resilient to large 
distances between the user and the reference station, 
increasing 3D position error by 10 meters with a 100 km user 
– reference station distance.  

Although it still does not reach the sub-meter and sub-
decimeter accuracy that ranging based localization 
techniques can achieve, LOC localizes without the need for 
ranging hardware, using capabilities that most modern 
satellites already have. If not used for precise localization, 
LOC could be used in emergency situations with any satellite 
with a radio and any set of users and reference stations.  

Related and future works are as follows:   

1. New scenarios and possible improvements to LOC will 
be investigated including multiple reference stations and 
multiple satellites.   

2. Joint Doppler and Ranging (JDR) techniques [9] have 
been developed, simulated, and analyzed, The JDR 
scheme3 enables real-time localization with increased 
precision, and is more robust with respective to the 
orbiter - user geometry.    

3. The LOC scheme, the JDR scheme and the 
corresponding concept of pseudo-pseudorange can be 
promising in improving the current Earth-orbiting 
navigation satellite systems, which are based on range 
measurements only.  This paper and [9] demonstrate a 
robust way that an orbiter’s velocity can be integrated 
into the position determination processes.  This can 
result in a) reducing the required number of navigation 
nodes to calculate a position fix, or b) improving the 
localization accuracy of existing Earth-orbiting 
navigation infrastructures.   

APPENDICES  
A.  LOC & PSEUDO-PSEUDORANGE 

Measurements of Doppler shift at the user and at the 
reference station, and the knowledge of the satellite velocity 
vector and its transmitted frequency can be used to solve for 
the range rate along the line between the satellite and the user 
(Equations 1 through 3). 
 

 𝐷𝑜𝑝𝑝𝑙𝑒𝑟 = 𝑓*+,+-.+/ − 𝑓1*2345-11+/ (1) 

 
𝑓*+,+-.+/ = 𝑓1*2345-11+/ 61 −

𝑅𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒
𝑐

> (2) 

 
3 Patent application pending.   

 
𝑅𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒 = −𝑐	 ∗

𝐷𝑜𝑝𝑝𝑙𝑒𝑟
𝑓1*2345-11+/

 (3) 

This range rate, along with the satellite’s velocity vector 𝑉B⃗421 , 
can be used to calculate the angle between the satellite’s 
velocity vector and the line of sight vector from the satellite 
to the user (Equation 4).  
 
	 𝑐𝑜𝑠𝜃 = −

𝑅𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒
F𝑉B⃗421F

 (4) 

 
Calculating this angle θ for the user, and similarly the angle 
ϕ for the reference station, a triangle can be drawn with 
vertices at the satellite, reference station, and the user at time-
point 1 (Figure 12). Note that the velocity vector 𝑢H.I and the 
corresponding angles 𝜃I and 𝜙I are not in general in the same 
plane defined by 𝐶I, R, and T. 
 

 
Figure 12: Visual Description of Doppler Localization 
with Law of Cosines at time-point 1. T is the user, R is the 
reference station, and 𝑪𝟏 is the satellite. 	𝒖O𝒗𝟏 is the unit 
vector of the satellite’s velocity vector and 𝒖O𝟏is the unit 
vector from the reference station to the satellite.  
The only range information that enters in the LOC calculation 
is F𝐿B⃑ IF, the pseudorange between the satellite 𝐶I and 
reference station R whose positions are known, and the 
altitude of the user on the lunar surface if the surface 
constraint is used for positioning.   From Figure 12, Equations 
5, 6, and 7 can be created through the definition of an angle 
between two vectors. F𝐿B⃑ IF is adjusted with Doppler 
measurements at the reference station (F𝐿B⃑ I′F) as shown as 
Equation 5, turning it into a pseudo-pseudorange.  Similarly, 
the unknown pseudorange of the user, which is denoted by 
𝐶I𝑇BBBBBBB⃑ = 	 𝐿B⃑ I + 𝑃B⃑ , is also adjusted as shown in Equation 6.   

 
Pseudo-pseudorange F𝐿B⃑ I′F = XB⃑ Y∙	[O\Y

,]4^Y
 (5) 

 
Pseudo-pseudorange _𝐶I𝑇′BBBBBBBB⃑ _ = `XB⃑ YabB⃑ c	∙	[O\Y

,]4dY
 (6) 

 
𝑐𝑜𝑠𝜑I =

𝑃B⃑ 	 ∙ 	𝑢HI

F𝑃B⃑ F
 (7) 
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Now that the equations for the pseudo-pseudoranges of the 
reference station and user, F𝐿B⃑ I′F and _𝐶I𝑇′BBBBBBBB⃑ _ respectively, 
and the angle 𝜑I are derived, the Law of Cosines is used to 
tie the quantities together (Equation 8).  
 

 _𝐶I𝑇′BBBBBBBBB⃑ _
f
= F𝐿B⃑I′F

f
+	F𝑃B⃑ F

f
− 2F𝐿B⃑I′FF𝑃B⃑ F𝑐𝑜𝑠𝜑I (8) 

 
Equations 5 – 8 can be converted into a cost function to solve 
for the vector 𝑃B⃑  (Equations 9 - 10).   
 

 𝑓I = F𝐿B⃑I′F
f
+	F𝑃B⃑ F

f
− 2F𝐿B⃑I′FF𝑃B⃑ F𝑐𝑜𝑠𝜑I − _𝐶I𝑇BBBBBBB⃑ ′_

f
 (9) 

 
For the general case of time-point i, the cost function can be 
written in terms of the vector 𝑃B⃑  as follows (Equation 10). 
 

 𝑓- = F𝐿B⃑ -′F
f
+ 	F𝑃B⃑ F

f
− 2F𝐿B⃑ -′FF𝑃B⃑ F𝑐𝑜𝑠𝜑- − F𝐶h𝑇BBBBBBB⃑ ′F

f
 (10) 

 
As can be seen from Figure 12, errors in the satellite velocity 
vector will be present in the angles 𝜃I and 𝜙I; these angles 
are used in the pseudo-pseudorange equations 5 and 6. 
Because the reference station and the user will see 
approximately the same error in these angles, the effect of the 
satellite velocity error will be “cancelled out” during the 
subtraction of these two pseudo-pseudoranges in the cost 
function (Equation 10). 
 
Finally, the Jacobian of this cost function can be calculated 

(Equation 11). For 𝑃B⃑ = i
𝑥
𝑦
𝑧
m, 

 
𝐽-I(𝑥, 𝑦, 𝑧) =

𝜕𝑓-

𝜕𝑥  (11a) 

 
𝐽-f(𝑥, 𝑦, 𝑧) =

𝜕𝑓-

𝜕𝑦  (11b) 

 
𝐽-r(𝑥, 𝑦, 𝑧) =

𝜕𝑓-

𝜕𝑧  (11c) 

𝑃B⃑  is then evaluated using the Newton’s Method as shown 
below, and 𝑃sBBBB⃗  converges to the convergence properties in 
Table 4 (Equations 12 – 13). 
 

𝑃tBBBB⃗ = u
0
0
0
w	 			𝐹s = y

𝑓I(𝑃sBBBB⃗ )
𝑓f(𝑃sBBBB⃗ )
𝑓r(𝑃sBBBB⃗ )

z	𝐹t = y
𝑓I(𝑃tBBBB⃗ )
𝑓f(𝑃tBBBB⃗ )
𝑓r(𝑃tBBBB⃗ )

z 

 

𝐽t = 𝐽`𝑃tBBBB⃗ c			            			𝐽s = 𝐽(𝑃sBBBB⃗ ) 
 

 ∆𝑃sBBBB⃗ = `𝐽s|𝐽sc
}I
𝐽s|𝐹s (12) 

 𝑃saIBBBBBBBB⃗ = 𝑃sBBBB⃗ − ∆𝑃sBBBB⃗  (13) 

 

B.  SURFACE CONSTRAINT DERIVATION 
Another assumption that increases the overall accuracy and 
decreases overall time for a position fix of the scheme is the 
surface constraint. If the user knows their regional, coarse 
location and has accurate topographical maps of the area, 
they can know their altitude on the surface of the planet. This 
altitude can be used as a constraint in the scheme, allowing 
for only 2 Doppler measurements to be required instead of 3.  
 
Although the surface constraint decreases the overall time 
required for a position fix and increases the accuracy, it is 
important to note that the constraint is optional. However, 
without the constraint, measurement quantities and window 
length will have to be extended significantly to reduce 3D 
position errors to a comparable level.  
 
The surface constraint can be added to LOC by adding the 
terms from equation 14 to the cost function (Equation 10).  𝑅 
is the position of the reference station in cartesian 
coordinates, and 𝑑 is the known altitude of the user at point 
T.   
 

𝑅 = u
𝑟I
𝑟f
𝑟r
w																										𝑑f = F𝑃B⃑ + 𝑅	F

f
 

 𝑑f = (𝑥 + 𝑟I)f + (𝑦 + 𝑟f)f + (𝑧 + 𝑟r)f (14) 

 𝑓4[*��]341- = 𝑓- + (𝑥 + 𝑟I)f + (𝑦 + 𝑟f)f + (𝑧 + 𝑟r)f − 𝑑f (15a) 

 𝑓4[*��]341+3/ = (𝑥 + 𝑟I)f + (𝑦 + 𝑟f)f + (𝑧 + 𝑟r)f − 𝑑f (15b) 

 
Likewise, terms can be added to the Jacobian.  Equation 17 
illustrates the construction of the Jacobian using the surface 
constraint and when there are 3 time points, that is i = 1, 2, 
and 3.  In this case the Jacobian is a 4 x 3 matrix. 
 
Similarly, 𝑃B⃑  is then evaluated using the Newton’s Method, 
and 𝑃sBBBB⃗  converges to the convergence properties in Table 4 
(Equations 12 – 13). 
 

𝑃tBBBB⃗ = u
0
0
0
w										𝐽t = 𝐽`𝑃tBBBB⃗ c			    			𝐽s = 𝐽(𝑃sBBBB⃗ ) 

 
 

 

	𝐹s =

⎣
⎢
⎢
⎢
⎢
⎡𝑓4[*��]341
I `𝑃sBBBB⃗ c
𝑓4[*��]341f `𝑃sBBBB⃗ c
𝑓4[*��]341r `𝑃sBBBB⃗ c

𝑓4[*��]341+3/ `𝑃sBBBB⃗ c⎦
⎥
⎥
⎥
⎥
⎤

	 

 

(16) 

 

 
 

𝐽`𝑃B⃑ c =

⎣
⎢
⎢
⎡𝐽
II(𝑥, 𝑦, 𝑧) + 2(𝑥 + 𝑟I) 𝐽If(𝑥, 𝑦, 𝑧) + 2(𝑦 + 𝑟f) 𝐽Ir(𝑥, 𝑦, 𝑧) + 2(𝑧 + 𝑟r)
𝐽fI(𝑥, 𝑦, 𝑧) + 2(𝑥 + 𝑟I) 𝐽ff(𝑥, 𝑦, 𝑧) + 2(𝑦 + 𝑟f) 𝐽fr(𝑥, 𝑦, 𝑧) + 2(𝑧 + 𝑟r)
𝐽rI(𝑥, 𝑦, 𝑧) + 2(𝑥 + 𝑟I) 𝐽rf(𝑥, 𝑦, 𝑧) + 2(𝑦 + 𝑟f) 𝐽rr(𝑥, 𝑦, 𝑧) + 2(𝑧 + 𝑟r)

2(𝑥 + 𝑟I)																								 2(𝑦 + 𝑟f) 																								2(𝑧 + 𝑟r) ⎦
⎥
⎥
⎤
    (17) 
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C.  SINGLE SATELLITE MULTI MEASUREMENT 
(SSMM) DERIVATION 

To acquire multiple measurements from a single satellite, a 
technique called Single Satellite Multiple Measurement 
(SSMM) was developed and used in most analysis. With a 
single satellite, multiple measurements can be taken over the 
entire pass. Using knowledge of the satellite’s and reference 
station’s position and the precise rotation rate of the planet, 
these measurements can be rotated to the reference frame of 
the final measurement. 
 
To better visualize the rotations, SSMM was used on the orbit 
of the Deep Space Habitat (DSH) and a user in Utopia 
Planitia on Mars.  
 
The first full pass of the DSH occurs at approximately t = 
50,000 seconds and ends at approximately t = 75,000 
seconds. These were used as the start and end times of the 
pass and all the measurements were made within this 
duration. The locations of the DSH, user (Target), and 
reference station (Base) at each of these times were recorded 
into Table 4. 
 

Once the final measurement was taken at t = 75,000 seconds, 
all the previous measurements were rotated to align with the 
final measurement. This was done by first storing the line of 
sight (LOS) vector between the reference station and satellite 
during each measurement. Because of the rotation of Mars, 
all of the LOS vectors were rotated the same amount that 
Mars had rotated in the time that had passed since the 
respective measurement, and about the same axis and in the 
same direction as the rotating planet. Once rotated, all of the 
stored LOS vectors now originate from the same location, the 
reference station at time tEnd. Now, each of the LOS vectors 
were treated as separate satellites with their own respective 
Doppler measurements. The rotated locations were recorded 
into Table 5, with the rotations performed on these vectors 
seen in Figure 13.  
 
Although this visualization is for Mars, the same concept can 
be applied for any other planetary body, including the Moon. 
For the Marian case, because the DSH is such a large orbit, 
the wait times between rotations were unfeasibly long. 
However, because the LRS has a lower orbit, the times 
between measurements can be from hours to minutes. SSMM 
was used in all analysis for this paper. 
 

Table 4: DSH, Target, and Base Locations at Each Time in Mars Centered Inertial 
Time (s) Label DSH Location (Cartesian km) 
50,000 tStart 6815.179,    30834.359,  4014.448 
62,500 tMid 17807.273,  24211.486,  10489.285 
58,000 tMid1 14163.072,  27260.358,  8342.687 
66,000 tMid2 20315.958,  21386.269,  11967.014 
75,000 tEnd 25168.532,  12651.984,  14825.398 
75,000 targetUser -1401.870,   1853.873,    2466.422 
75,000 baseUser -1409.834,   1847.824,    2466.422 

 
Table 5: DSH Locations Rotated to Align with the Final Measurement 

Time (s) Label DSH Rotated Location in MCI (Cartesian km) DSH Rotated Location in 
MCMF (Aerodetic) 

75,000 (was 50,000) rtStart -31574.369,  513.343,      4014.447 234.4726° E, 7.2449° N 
75,000 (was 62,500) rtMid -7490.569,    29106.466,  10489.285 159.8359° E, 19.2392° N 
75,000 (was 58,000) rtMid1 -20390.898,  22976.748,  8342.686 186.9917° E, 15.1935° N 
75,000 (was 66,000) rtMid2 3583.754,     29279.129,  11967.014 138.4257° E, 22.0821° N 
75,000 rtEnd 25168.531,  12651.984    14825.398,  77.4861° E, 27.7574° N 
75,000 targetUser -1401.870,   1853.873,     2466.422 180.5° E, 46.7° N 
75,000 baseUser -1409.834,   1847.824,     2466.422 180.7465° E, 46.7° N 
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(a) 

 
(c) 

 
(b) 

 
(d)

 
Figure 13: Line of Sight Vectors Between Satellites and Target User  

Before Rotation in 2D (a) and 3D (b) and After Rotation in 2D (c) and 3D (d) 
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D.  LOC VARIABLE MEASUREMENT AND MEASUREMENT WINDOW SIZE ANALYSIS 

 
(a) 

 

 
(b)              (c) 

Figure 14: 3D Position Error vs. Measurement Window Size vs. Number of Measurements per Window for LOC at 
the beginning of the LRS pass. (a) 3D view, (b) side view of relationship with Number of Measurements,  

(c) front view of relationship with Measurement Window Size 
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